Sudoku Solving Techniques

Locked Candidates - Column Within Block

In a 3x3 block of a Sudoku puzzle, it may happen that a specific digit cannot be determined its exact position yet, but it is locked in a few cells as a candidate. That means the digit must be in one of a few cells. If these cells happen to fall in the same column, then this digit cannot be a candidate for other cells in that column.

Let's demonstrate this more clearly with an example.

Example
C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9

2

5

6

9

2

5

6

9

2

5

6

9

1

2

5

6

9

8
4

1

2

5

6

9

7
3

2

3

6

8

5

9

1

2

3

6

7

3

6

4

5

9

6

8

4

5

7

9

2

3

5

6

7

9

2

4

7

8

9

1

5

9

2

3

5

6

9

2

9

1

5

9

2

5

6

9

2

8

9

2

4

7

9

2

4

9

8

5

6

7

3

5

6

7

2

4

5

9

2

4

5

9

1
5
6

2

4

1
8
9
7
3

2

4

3

7

9

1
2
4

5

7

6
8

5

9

8

2

4

5

9

2

5

9

2

4

6

7

2

4

6

2

6

7

3
1

2

5

9

2

3

1

3

7

9

2

4

5

2

6

8

2

4

6

7

8

4

5

7

9

2

5

7

9

6
8
1
3

4

5

7

9

2

5

7

9

2

4

7

9

Figure 1: In Block B2, Digit 2 is Locked in Two Yellow Cells

In block B2 of this Sudoku puzzle, the digit 2 is a candidate for two yellow cells (R1,C4) and (R2,C4). In other words, the digit 2 in block B2 is locked in these two yellow cells, and one of them must be 2.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9

2

5

6

9

2

5

6

9

2

5

6

9

1

2

5

6

9

8
4

1

2

5

6

9

7
3

2

3

6

8

5

9

1

2

3

6

7

3

6

4

5

9

6

8

4

5

7

9

2

3

5

6

7

9

2

4

7

8

9

1

5

9

2

3

5

6

9

2

9

1

5

9

2

5

6

9

2

8

9

2

4

7

9

2

4

9

8

5

6

7

3

5

6

7

2

4

5

9

2

4

5

9

1
5
6

2

4

1
8
9
7
3

2

4

3

7

9

1
2
4

5

7

6
8

5

9

8

2

4

5

9

2

5

9

2

4

6

7

2

4

6

2

6

7

3
1

2

5

9

2

3

1

3

7

9

2

4

5

2

6

8

2

4

6

7

8

4

5

7

9

2

5

7

9

6
8
1
3

4

5

7

9

2

5

7

9

2

4

7

9

Figure 2: Two Yellow Cells Fall in the Same Column C4

The two yellow cells (R1,C4) and (R2,C4) happen to fall in the same column C4.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9

2

5

6

9

2

5

6

9

2

5

6

9

1

2

5

6

9

8
4

1

2

5

6

9

7
3

2

3

6

8

5

9

1

2

3

6

7

3

6

4

5

9

6

8

4

5

7

9

2

3

5

6

7

9

2

4

7

8

9

1

5

9

2

3

5

6

9

2

9

1

5

9

2

5

6

9

2

8

9

2

4

7

9

2

4

9

8

5

6

7

3

5

6

7

2

4

5

9

2

4

5

9

1
5
6

2

4

1
8
9
7
3

2

4

3

7

9

1
2
4

5

7

6
8

5

9

8

2

4

5

9

2

5

9

2

4

6

7

2

4

6

2

6

7

3
1

2

5

9

2

3

1

3

7

9

2

4

5

2

6

8

2

4

6

7

8

4

5

7

9

2

5

7

9

6
8
1
3

4

5

7

9

2

5

7

9

2

4

7

9

Figure 3: Digit 2 Cannot be a Candidate for Orange Cells in Column C4

Since one of the two yellow cells in column C4 must be 2 and each column cannot contain the same digit more than once, other cells (marked in orange) in column C4 cannot be 2. Therefore, the candidate digit 2's in these orange cells can be safely removed.

Other Examples

Back to Locked Candidates

List of Sudoku Solving Techniques

©2025 sudoku9x9.com - All Right Reserved.