Sudoku Solving Techniques

Naked Pair

In a Sudoku puzzle, if two cells in a 9-cell unit (a row, a column, or a 3x3 block) have only two digits as candidates and the two digits are exactly the same, then these two digits must each occupy one of these two cells. They cannot occupy other cells in the same 9-cell unit. So, if these two digits appear in other cells in the same 9-cell unit as candidates, they can be removed.

The Naked Pair technique can be used in a row, in a column, or in a 3x3 block. The following examples will use real Sudoku puzzles to demonstrate this technique in all these three situations.

Example 1 - Naked Pair in a Row
C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9

2

5

7

9

8

2

7

9

1

5

7

4

2

5

7

9

6
3
6
4
3
9

5

7

2

5

7

1

2

7

8

1

2

5

7

1

2

5

7

9

2

5

9

3

5

7

8

2

3

5

6

7

8

2

3

5

6

5

7

4

2

5

9

2

6

7

9

3
5

2

6

7

8

9

4

2

6

7

8

9

6

7

9

1

6

7

9

1

2

4

7

1

6

7

9

1

2

6

7

9

2

7

5

6

7

9

2

5

6

7

9

4

7

3
8

4

7

6

7

9

8

3

5

7

3

5

6

7

9

1
2

5

6

7

9

4

5

6

9

4

5

6

7

8

9

5

7

9

1

4

5

7

8

9

5

7

9

7

8

9

3
2

6

8

3

7

8

2

6

7

9

1

3

7

8

1

7

9

1

7

9

5

1

6

4

3

4

5

8

3

5

8

3

4

5

6

1

2

3

5

8

2

3

4

5

9

1

8

7
Figure 1a: Two Identical Candidate Digits 5 and 7 for the Two Green Cells in Row R2

In row R2 of the puzzle in Figure 1a, the two green cells (R2,C2) and (R2,C5) have the same two candidate digits 5 and 7, which are the only candidates for the two green cells. Therefore, the digits 5 and 7 each will occupy one of these two green cells and cannot occupy any other cells in the same row. Consequently, the candidates 5 and 7 in other cells in the same row can be removed, as shown in Figure 1b below.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9

2

5

7

9

8

2

7

9

1

5

7

4

2

5

7

9

6
3
6
4
3
9

5

7

2

5

7

1

2

7

8

1

2

5

7

1

2

5

7

9

2

5

9

3

5

7

8

2

3

5

6

7

8

2

3

5

6

5

7

4

2

5

9

2

6

7

9

3
5

2

6

7

8

9

4

2

6

7

8

9

6

7

9

1

6

7

9

1

2

4

7

1

6

7

9

1

2

6

7

9

2

7

5

6

7

9

2

5

6

7

9

4

7

3
8

4

7

6

7

9

8

3

5

7

3

5

6

7

9

1
2

5

6

7

9

4

5

6

9

4

5

6

7

8

9

5

7

9

1

4

5

7

8

9

5

7

9

7

8

9

3
2

6

8

3

7

8

2

6

7

9

1

3

7

8

1

7

9

1

7

9

5

1

6

4

3

4

5

8

3

5

8

3

4

5

6

1

2

3

5

8

2

3

4

5

9

1

8

7
Figure 1b: In Row R2, Candidates 5 and 7 in Cells Other Than the Green Cells Removed
Example 2 - Naked Pair in a Column
C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9

3

6

2
9

4

6

7
8

3

4

5
1

5

7

3

5

7

8
1

2

4

5

9

4

7

2

3

4

7

6
4

5

6

7

1

2

5

2

5

6

3
9

2

7

8

2

7

8

8
4
7
2
9
3

1

5

6

1

6

5

6

2
6
5

4

7

8
1
9

4

7

3
3
1
9
6

4

7

5

2

8

2

4

7

8

2

4

7

8

7
3

2

4

5

6

9

1

6

8

2

4

5

6

1

4

5

1

8

2

4

5

4

5

6

8

1

2

4

5

2

4

4

5

6

8

1

2

4

5

2

4

3
9
7

1

2

5

8

9

2

4

8

7
3

2

4

8

1

2

5

8

2

4

5

8

6
Figure 2a: Two Identical Candidate Digits 4 and 7 for the Two Green Cells in Column C4

In column C4 of the puzzle in Figure 2a, the two green cells (R3,C4) and (R5,C4) have the same two candidate digits 4 and 7, which are the only candidates for the two green cells. Therefore, the digits 4 and 7 each will occupy one of these two green cells and cannot occupy any other cells in the same column. Consequently, the candidates 4 and 7 in other cells in the same column can be removed, as shown in Figure 2b below.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9

3

6

2
9

4

6

7
8

3

4

5
1

5

7

3

5

7

8
1

2

4

5

9

4

7

2

3

4

7

6
4

5

6

7

1

2

5

2

5

6

3
9

2

7

8

2

7

8

8
4
7
2
9
3

1

5

6

1

6

5

6

2
6
5

4

7

8
1
9

4

7

3
3
1
9
6

4

7

5

2

8

2

4

7

8

2

4

7

8

7
3

2

4

5

6

9

1

6

8

2

4

5

6

1

4

5

1

8

2

4

5

4

5

6

8

1

2

4

5

2

4

4

5

6

8

1

2

4

5

2

4

3
9
7

1

2

5

8

9

2

4

8

7
3

2

4

8

1

2

5

8

2

4

5

8

6
Figure 2b: In Column C4, Candidates 4 and 7 in Cells Other Than the Green Cells Removed
Example 3 - Naked Pair in a Block
C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9
9
2

5

7

8

6
4
1

7

8

3

5

7

8

3
4
1
5

7

8

7

8

2
6
9
6

5

8

5

7

9
2
3

5

8

1

4

5

8

1

4

5

7

4

7

8

6

4

7

8

5
9
2

4

8

1
3

1

7

8

9

1

2

7

8

9

2

4

7

8

7

8

3

7

8

3

4

7

8

8

9

5
6

5

8

3

4

5

9

1

4

8

6
2
7

4

9

3

5

8

5

8

9

1

2

4

7

8

5

7

8

4

5

7

8

9

1

2

7

5

7

6
4

1

2

8

9

2

5

8

6

1

2

7

8

9

2

5

7

8

1

7

9

1

2

3

7

9

2

3

5

7

7
6

1

2

5

9

3

1

5

9

1

2

5

9

4

1

5

9

8
Figure 3a: Two Identical Candidate Digits 5 and 8 for the Two Green Cells in Column C4

In block B3 of the puzzle in Figure 3a, the two green cells (R1,C8) and (R3,C7) have the same two candidate digits 5 and 8, which are the only candidates for the two green cells. Therefore, the digits 5 and 8 each will occupy one of these two green cells and cannot occupy any other cells in the same block. Consequently, the candidates 5 and 8 in other cells in the same block can be removed, as shown in Figure 3b below.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9
9
2

5

7

8

6
4
1

7

8

3

5

7

8

3
4
1
5

7

8

7

8

2
6
9
6

5

8

5

7

9
2
3

5

8

1

4

5

8

1

4

5

7

4

7

8

6

4

7

8

5
9
2

4

8

1
3

1

7

8

9

1

2

7

8

9

2

4

7

8

7

8

3

7

8

3

4

7

8

8

9

5
6

5

8

3

4

5

9

1

4

8

6
2
7

4

9

3

5

8

5

8

9

1

2

4

7

8

5

7

8

4

5

7

8

9

1

2

7

5

7

6
4

1

2

8

9

2

5

8

6

1

2

7

8

9

2

5

7

8

1

7

9

1

2

3

7

9

2

3

5

7

7
6

1

2

5

9

3

1

5

9

1

2

5

9

4

1

5

9

8
Figure 3b: In Block B3, Candidates 5 and 8 in Cells Other Than the Green Cells Removed

List of Sudoku Solving Techniques

©2025 sudoku9x9.com - All Right Reserved.