Sudoku Solving Techniques

Nishio

The logic of the Nishio technique is just like the "proof by contradiction" method in mathematics. Assume that an undetermined cell is the digit "k" say. If this assumption leads to a violation of the Sudoku rules, then we can confirm that this assumption is incorrect. As a result, this cell cannot be "k" and it can be removed from the cell as a candidate.

Example
C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9
3
4
9
1
5
7
6
8
2

6

7

2

6

7

2

6

3

4

9

8

3

9

1

3

4

5

3

5

5
8
1

2

3

4

6

2

3

4

9

4

7

3

4

7

4

7

9

1

6

3

4

7

1

2

8

4

7

9

2

6

5
2

4

6

7

9

1

6

8

9

5

3

4

7

1

3

4

6

7

8

9

4

6

7

9

6

8

9

4

7

8

4

5

7

4

5

7

8

2

4

7

9
6
1
3

2

4

7

8

5

8

3

4

6

2
9

1

4

5

8

7

1

6

6

8

1

2

5

6

8

3

8

3

5

7

6

9

2

6

9

4

4

7

8

2

4

5

7

9
6

1

4

5

4

5

8

3

8

1

2

3

5

8

Figure 1: Assume Cell (R3,C6) is 3

In this puzzle, the cell (R3,C6) has two candidate digits. Assume that 3 is the digit for the cell (R3,C6).

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9
3
4
9
1
5
7
6
8
2

6

7

2

6

7

2

6

3

4

9

8

3

9

1

3

4

5

3

5

5
8
1

2

3

4

6

2

3

4

9

4

7

3

4

7

4

7

9

1

6

3

4

7

1

2

8

4

7

9

2

6

5
2

4

6

7

9

1

6

8

9

5

3

4

7

1

3

4

6

7

8

9

4

6

7

9

6

8

9

4

7

8

4

5

7

4

5

7

8

2

4

7

9
6
1
3

2

4

7

8

5

8

3

4

6

2
9

1

4

5

8

7

1

6

6

8

1

2

5

6

8

3

8

3

5

7

6

9

2

6

9

4

4

7

8

2

4

5

7

9
6

1

4

5

4

5

8

3

8

1

2

3

5

8

Figure 2: Cell (R3,C6) Cannot be 5

The cell (R3,C6) cannot be 5 since it is 3 by assumption.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9
3
4
9
1
5
7
6
8
2

6

7

2

6

7

2

6

3

4

9

8

3

9

1

3

4

5

3

5

5
8
1

2

3

4

6

2

3

4

9

4

7

3

4

7

4

7

9

1

6

3

4

7

1

2

8

4

7

9

2

6

5
2

4

6

7

9

1

6

8

9

5

3

4

7

1

3

4

6

7

8

9

4

6

7

9

6

8

9

4

7

8

4

5

7

4

5

7

8

2

4

7

9
6
1
3

2

4

7

8

5

8

3

4

6

2
9

1

4

5

8

7

1

6

6

8

1

2

5

6

8

3

8

3

5

7

6

9

2

6

9

4

4

7

8

2

4

5

7

9
6

1

4

5

4

5

8

3

8

1

2

3

5

8

Figure 3: Cell (R3,C5) Must be 5

The cell (R3,C5) must be 5 since it is the only possible position for the digit 5 in row R3.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9
3
4
9
1
5
7
6
8
2

6

7

2

6

7

2

6

3

4

9

8

3

9

1

3

4

5

3

5

5
8
1

2

3

4

6

2

3

4

9

4

7

3

4

7

4

7

9

1

6

3

4

7

1

2

8

4

7

9

2

6

5
2

4

6

7

9

1

6

8

9

5

3

4

7

1

3

4

6

7

8

9

4

6

7

9

6

8

9

4

7

8

4

5

7

4

5

7

8

2

4

7

9
6
1
3

2

4

7

8

5

8

3

4

6

2
9

1

4

5

8

7

1

6

6

8

1

2

5

6

8

3

8

3

5

7

6

9

2

6

9

4

4

7

8

2

4

5

7

9
6

1

4

5

4

5

8

3

8

1

2

3

5

8

Figure 4: Cell (R8,C5) Cannot be 5

The cell (R8,C5) cannot be 5 since the cell (R3,C5) in the same column C5 is 5.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9
3
4
9
1
5
7
6
8
2

6

7

2

6

7

2

6

3

4

9

8

3

9

1

3

4

5

3

5

5
8
1

2

3

4

6

2

3

4

9

4

7

3

4

7

4

7

9

1

6

3

4

7

1

2

8

4

7

9

2

6

5
2

4

6

7

9

1

6

8

9

5

3

4

7

1

3

4

6

7

8

9

4

6

7

9

6

8

9

4

7

8

4

5

7

4

5

7

8

2

4

7

9
6
1
3

2

4

7

8

5

8

3

4

6

2
9

1

4

5

8

7

1

6

6

8

1

2

5

6

8

3

8

3

5

7

6

9

2

6

9

4

4

7

8

2

4

5

7

9
6

1

4

5

4

5

8

3

8

1

2

3

5

8

Figure 5: Cell (R2,C4) Cannot be 3

The cell (R2,C4) cannot be 3 since the cell (R3,C6) in the same block B2 is 3.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9
3
4
9
1
5
7
6
8
2

6

7

2

6

7

2

6

3

4

9

8

3

9

1

3

4

5

3

5

5
8
1

2

3

4

6

2

3

4

9

4

7

3

4

7

4

7

9

1

6

3

4

7

1

2

8

4

7

9

2

6

5
2

4

6

7

9

1

6

8

9

5

3

4

7

1

3

4

6

7

8

9

4

6

7

9

6

8

9

4

7

8

4

5

7

4

5

7

8

2

4

7

9
6
1
3

2

4

7

8

5

8

3

4

6

2
9

1

4

5

8

7

1

6

6

8

1

2

5

6

8

3

8

3

5

7

6

9

2

6

9

4

4

7

8

2

4

5

7

9
6

1

4

5

4

5

8

3

8

1

2

3

5

8

Figure 6: Cell (R8,C4) Must be 3

The cell (R8,C4) must be 3 since it is the only possible position for the digit 3 in column C4.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9
3
4
9
1
5
7
6
8
2

6

7

2

6

7

2

6

3

4

9

8

3

9

1

3

4

5

3

5

5
8
1

2

3

4

6

2

3

4

9

4

7

3

4

7

4

7

9

1

6

3

4

7

1

2

8

4

7

9

2

6

5
2

4

6

7

9

1

6

8

9

5

3

4

7

1

3

4

6

7

8

9

4

6

7

9

6

8

9

4

7

8

4

5

7

4

5

7

8

2

4

7

9
6
1
3

2

4

7

8

5

8

3

4

6

2
9

1

4

5

8

7

1

6

6

8

1

2

5

6

8

3

8

3

5

7

6

9

2

6

9

4

4

7

8

2

4

5

7

9
6

1

4

5

4

5

8

3

8

1

2

3

5

8

Figure 7: Cell (R8,C5) Cannot be 3

The cell (R8,C5) cannot be 3 since the cell (R8,C4) in the same row R8 is 3.

Now, we can see that there are no candidates left for the orange cell (R8,C5), and it cannot happen for a valid Sudoku puzzle. Therefore, we can conclude that the assumption that the cell (R3,C6) is 3 is incorrect. So the cell (R3,C6) cannot be 3, and the candidate digit 3 can be removed from the cell (R3,C6), as shown in Figure 8.

C1
C2
C3
C4
C5
C6
C7
C8
C9
R1
R2
R3
R4
R5
R6
R7
R8
R9
3
4
9
1
5
7
6
8
2

6

7

2

6

7

2

6

3

4

9

8

3

9

1

3

4

5

3

5

5
8
1

2

3

4

6

2

3

4

9

4

7

3

4

7

4

7

9

1

6

3

4

7

1

2

8

4

7

9

2

6

5
2

4

6

7

9

1

6

8

9

5

3

4

7

1

3

4

6

7

8

9

4

6

7

9

6

8

9

4

7

8

4

5

7

4

5

7

8

2

4

7

9
6
1
3

2

4

7

8

5

8

3

4

6

2
9

1

4

5

8

7

1

6

6

8

1

2

5

6

8

3

8

3

5

7

6

9

2

6

9

4

4

7

8

2

4

5

7

9
6

1

4

5

4

5

8

3

8

1

2

3

5

8

Figure 8: Candidate Digit 3 in Cell (R3,C6) Removed

List of Sudoku Solving Techniques

Previous: Forcing Chain

©2025 sudoku9x9.com - All Right Reserved.